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Abstract Firstly, some similarity reductions of the complex modified Korteweg-de Vries 
equation (CMWV). which arises in lhe asymptotic interpretation of onedimensional plane-wave 
propgation in aquadratic micropolar medium are discussed. Although il is not a soliton equation 
solvable by inverse scattering traosformation, its similarity reductions obtained by the use of Lie 
group methods are of mathematical interest. Secondly, the Painlevd analysis developed by Weiss 
er nl far nonlinear partial differential equations is applied lo the CMKdv equation, and the data 
obtained by the meat ion technique yield some analytical solutio~s of the ordinary mcdified 
Kottcweg-de Vries equation and travelling-wave solutions of the CMMV equation which are also 
solutions of the similarity reduction obtained by classical Lie group analysis. 

1. Introduction 

Quasilinear parabolic equations, or nonlinear reactiondiffusion systems, arise in the 
modelling of phenomena in physics, chemistry, biology and other applied sciences. The 
complex modified Korteweg-de Vries equation (CMKdV) 

arises in the asymptotic investigation of electrostatic waves in a magnetized plasma, and 
in the asymptotic interpretation of one-dimensional plane-wave propagation in a quadratic 
micropolar medium 111. 

In [2] a solitary wave solution 

is obtained, and it is shown that CMKdV equation does not pass the Painlev6 test given by 
Weiss et al [3] for complete integrability. 

In this paper we first study the similarity reductions of the CMKdV equation. The classical 
method for finding similarity reductions of a given partial differential equation is to use the 
t i e  group method of infinitesimal transformations, originally developed by Lie [4]. Though 
the method is entirely algorithmic, it often involves a large amount of tedious algebra 
and auxiliary calculations which are virtually unmanageable manually. Recently, symbolic 
manipulation programs have been developed, especially in Mathematica, Macsyma and 
Reduce. In order to facilitate the determination of the associated similarity reductions, we 
used the package SPDE in the computer algebra system Reduce. 
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Secondly we will see that Painlev.5 analysis is a powerful tool for the construction of 
explicit solutions and Lie-Bkklund transformations. For integrable equations it also helps 
to find Lax pairs and recursion operators. It also plays an important role in the study of the 
chaotic behaviour of nonlinear partial differential equations. 

2. Classical similarity reductions 

Since Iw( in (1) brings some difficulty in the calculations, we first let w = U + iu and 
separate the real and imaginary parts in (1) and obtain the system 

Then using the package SPDE in the computer algebra system Reduce we find chat the 
system (3) admits a Lie group with generators 

a 
XI =-  - ~. 

The non-vanishing commutators are 

[ X I  I x 4 1  = XI [x2, X d  = 3x2.. 

The following list presents the one-parameter groups of point transformations, the form 
of the invariant solutions and similarity reductions corresponding to the generators XI, X Z ,  
X 3  and X 4 :  

Generator Point Invariant Similarity 
transformations solution reduction 

x * = x  +E 

W *  = w 
XI : I* = f f (o f '  = 0 

X f  = x  
t' = f No invariant 

solution x 3  : 
w * = w  e'' 
x* = E X  

w* W / &  
x 4  : t* = &3f f (xt-1'3) b f " - f z f + a l f l Z f  = D  (9) 

while 
x * = x  +f& 

; x 1 + x 2 :  t * = t  +E f ( x  - 4 bf" - cf + ~ l f l ~ f  = D. (10) 
W' = w 
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3. Painlev6 test for P D E ~  

Since the formulation of the Painlevd tests, there has been considerable interest in using 
the Painlevt property as a means of determining whether given equations, both partial and 
ordinary differential equations, are integrable. To apply the test to a partial differential 
equation we use the theory of complex functions with several complex variables. 

The major difference between analytic functions of one complex variable and several 
complex variables is that, in general, the singularities of a function of several complex 
variables cannot be isolated [6] .  If f = f ( 2 , .  . . . , 2,) is a meromorphic function of n 
complex variables (2n real variables), the singularities of f occur along analytic manifolds 
of (real) dimension 2n - 2. These manifolds are determined by conditions of the form 

(1 1) +h.. . ., 2” )  = o  
where 4 is an analytic function of (ZI, . . . , zn) in a neighbourhood of the manifold. 

With reference to the above, we say that a partial differential equation has the Painlo6 
property when the solutions of the PDE are single-valued about the movable singulariry 
manifolds. For partial differential equations we require that the solution be a single-valued 
functional of the data, i.e. arbitraryyfunctions. This is a formal property and not a restriction 
on the data itself. 

To verify if a PDE has the Painlevd property we introduce a method for expanding a 
solution of a nonlinear PDE about a movable, singular manifold (1 I). Let U = u(z,, . . . , z.) 
be a solution of the PDE and assume that 

where q5 and 

uj =uj(Zl ,..., 2J (13) 

are analytic functions of (21, . . . , z.) in a neighbourhood of the manifold (1 1). Substitution 
of (12) into the PDE determines the possible values of p and defines the recursion relations 
for u j ,  j = 0, 1,2,. , .. When p is a negative integer and (12) is a valid and general 
expansion about the manifold (1 I), then the solution has a single-valued representation 
about (11). If this representation is valid for all allowed movable singularity manifolds, 
then the PDE has the Painlev6 property. For a specific PDE it is necessary to identify all 
possible values for p and then find what the form of the resulting phi series [71 is. 

A point that should be emphasized is that the phi series for nonlinear PDE contains 
a lot of information about the PDE. For equations which have the Painlevd property a 
method has been developed for finding the Lax pairs and Backlund transformations [&IO]. 
An outline and an application of the singular manifold method is presented in section 4. 
For equations that do not have the Painlev6 property, it is still possible to obtain single- 
valued expansions by specializing the arbitrary functions that appear in the phi series 
expansions. This specialization leads to a system of partial differential equations for the 
formally arbitrary data. For specific systems, and it is also conjectured in general, these 
equations are integrable. The form of the resulting reduction enables the identification of 
integrable reductions of the original systems [12]. 

Now we are going to illustrate the nature of the Painlev6 test on the complex modified 
Korteweg-de Vries equation (1). 
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4. Painlev6 analysis for the CMKdV Equation 

Let #(x, t )  = 0 be the solution singularity manifold of (3) and 

A A hiohammad and M Can 

Substituting (14) into (3) we have p = -1, 

and 
6B&,4~2 = -$t@&o + B (3&oxx - 6A@z+ox - 2$x&z,u0 + %@;PO) 
6B&z = A&w + B (3@3~0xx - 6 h h X ~ x  - 29&~muo + f&uo) .  

The resonance points are j = - 1 ,  0, 3 and j = 4. Clearly the resonance point j = -1 
corresponds to the free singularity manifold function @ ( x ,  t ) .  At the resonance j = 0, 
we have relation (15); hence uo or uo is arbitrary. For j = 3, the recurrance relation is 
satisfied identically. Hence up and ug are arbitrary. However, for j = 4 we see that only 
one of the uq or u4 is a rb inq .  To write a general solution to this system one needs six 
arbitrary functions. However, the number of the arbitrary quantities here is five. Therefore 
the system of quasilinear partial differential equations (3) does not pass the painlev6 test 
for PDEs 121, but this failure does not prevent us from deriving some valuable results from 
the data obtained from this analysis. 

(17) 

5. Exact Solutions of the CMKdV Equation 

Let us truncate the series in (12) at the second term and assume that 
uj = 0. j > 2. Then 

I .  
va 

u = - + U  
4 

i.e. u t ,  UI must be a solution of the original system of PDEs (3). Therefore relation (18) 
can be taken as a autoBlklund transformation that relates two solutions U ,  U and U , ,  u1 
of (3) if U ] ,  U, given by (16), and UO, uo interrelated by (15) satisfy (19) and (20). 
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Hence, solving (15), (19) and (20) for Ug(t,X), u g ( t , x )  and @ ( f , x )  one obtains a 

Although this is a nonlinear system of paaid differential equations and its solution is 
even more difticult than the original one, we are interested only in some particular solutions. 

Let us define two invariant functions under the group ‘H of homographic transformations 

particular solution of the CMKdV equation through (16) and (18). 

4-+- a @ + b  a d - b c # O  
c 4 + d  

called the Schwarzian derivative, and 
C = - -  4I 

4 x  
which has the dimension of a velocity, and a non-invariant ratio: 

(24) L &x 

2 @ x  
The two elementary invariants S and C are linked by the compatibility condition (@I)Ixz = 
(@xzx)I which reads [I21 

(25) SI + c,,, + 2c, s + CS, = 0 
when expressed in terms of C and S. 

Let us define two more functions U ( f , x ) ,  V ( t ,  x )  by 

In terms of L ,  the two invariants S, C and new functions U ,  V ,  the expressions in (15),(16) 
become 

U1 = -U, + LU 

3/sux,, + (8s - C)U = 0 
3@V,, + @S - C ) V  = 0.  

U, = -v, + LV (28) 
and the expressions in (19) transform into 

(29) 

Multiplying the first of these equations by Ux and the second by V, and adding the resulting 
equations, we get 

(30) [(U2 + (VA’], = 0 
and integrating once we obtain 

(31) 

(32) 

28 (U3+ (VXY = -D(t) 
01 

where D(r)  is an arbitrary function o f t .  While multiplying the first of these equations by 
U and the second by V and adding the resulting equations, one gets 

gs - c = -3PD(t ) .  

Hence the expressions in (29) become 
U,, - D(t)U = 0 

V,, - D(r)V = 0 (33) 
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and have solutions which satisfy (27): 
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where Q(t) is a function off which neads to be determined 
Now equation (20) in terms of the new functions is 

L(U, + SU,) - (U, + SU,), - $.Uz = 0 
+ SV,), - ;c,v = 0. U% + SV)  - 

On the other hand, adding the equations in (35) one obtains 

(35) 

and hence 

D(t)S,, = 0. (37) 
Now there are two possibilities; D ( f )  
discuss these two cases serarately. 

0 or S, z 0. In what follows we are going to 

Case 1. Oft) 5 0 

In this case U and V are real constants such that 

If U = 0 or V = 0, equations (I@, (26) and (28) imply that U 0 or U = 0. Then one 
of the equations in (3) is satisfied automatically. The other equation as well as the original 
CMKdV equation (1) reduce to the usual modified Korteweg-de Vnes equation, namely 

(39) @, + a(@3L + paxxx = 0. 

If U .  V # 0 then the symmetry of the equations impIies that 

$2 (40) , p = v z = - -  B 2 

a 
and hence one gets 

& U = V = &  &=E (41) 

(42) 

In this paper we shall consider only the plus sign in +. The negative sign leads to the 
complex conjugate of the solution obtained in the case of the positive sign. 

In this case by (32) we have 

c - g s = o  (43) 
and in terms of the two invariants S, C and the non-invariant ratio L, the system in (20) 
reduces into a single equation 

(44) L, - ~ B G ~ L  + B L,, = o 
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or equivalently 

2(C - BS)L' - 2(C - ps),L + (C - ps), + S(C - /SS) = 0. (45) 
In view of (43), the left-hand side of (45) vanishes identically, and hence imposes no further 
restriction on S and C. Therefore the only conditions on S and C are relation (43) and the 
compatibility condition (25). 

Substitution of (43) in (25) leads to the Korteweg-de Vnes equation 

st -I- BS,,, + 3ps s, = 0. (46) 
The above analysis reveals that for any solution of the KdV equation (46) in S one 

obtains the solutions of the equation (22) for @(t, x )  and hence a solution of the CMKdV 
equation (3). However to obtain the solutions of (22), one needs the following two lemmas 
about the differential equations written in terms of the Schwarzian derivatives [13]. 

Lemma 1. Let Yj and Y, be two linearly independent solutions of the equation 

d'Y - + P(z )Y  = 0 
dzZ (47) 

which are defined and holomolphic on some simply connected domain D in the complex 
plane. Then W ( z )  = Yj(z)/Yz(z) satisfies the equation 

{ W ;  2 )  = 2 P ( z )  (48) 
at all points of D where W&) # 0. Conversely, if W ( z )  is a solution of (48), holomorphic 
in some neighbourhood of zo E D, then one can find two linearly independent solutions 
W(z) and Yz(z) of (47) such that W ( z )  = YI(z)/%(z). 

Lemma 2. 
acting on the first argument, namely, 

The Schwartzian derivative is invariant under fractional linear transformation 

[ s ; z }  = {Ur; z )  ad-  bc # O  (49) 

where a, b, c, d are constants, 

Let us now consider two simple special cases. 

A. Solutions for constant S. The constant functions S = 121' with A a constant are 
solutions of the Korteweg-de Vnes equation (46). 

For S = -2A'. Equation (22) becomes 

S = [@; X )  = -2A'. 

YI = E(t)e*' + F(t)e-*' 

(50) 
Hence P ( x )  = -A' in (47) and two linearly independent solutions are 

Y' = G(t)eAx + H(t)e-". (51) 
Therefore by lemma 1 and lemma 2 one obtains 

E(t)eAX + F(t)e-Ax 
G(t)eAx + ff(l)e+ 

E H - F G # O .  @ ( t ,  x )  = 

To determine the r-dependence of + ( r ,  x )  let us recall from (43) that 

(53) 
@I 

4 x  
c p s = -2p.2 = 
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This leads to a system of nonlinear ordinary differential equations in the coefficients E ,  F, 
G and H :  

E G I -  E' G = O  

F H'-F' H = O  (54) I 4,9A3G H = G' H' - G U'. 
A particular solution of (54) is 

where A. B ( A  # B )  are real arbitrary constants. This solution of (54) leads to 

@(t, x )  = A + Be& sechhc 5 = x + 2,!?Azt. (55) 
With this @ ( t , x )  one gets 

secbA$-(l+ tanhit) (56) 
CI 

and 

where M is an arbitrary constant. For M = 1 one gets as a special case 

U([, X )  = A c -- coth A<. (59) 

Hence ~ ( 2 .  x )  and u l ( t ,  x )  in the above are exact solutions for the usual MKdV equation 

w, + 2ar(w?* + PQXXX = 0 

w ( t , x )  = u t ( t , x )+ iu~( r ,x )  

(60) 
which are not new, and the corresponding exact solutions of the CMKdV equation (1) are 

and 

w ( t , x )  = u ( t , x ) +  i u ( t , x ) .  

b f " - c f  + a f 3 =  D (61) 

The functions f i  (e ) ,  f z ( p )  in (57) and (58) are solutions of the similarity reduction 

of the MKdV equation (60) which is the similarity reduction (10) with real f's. 

For S = 2A2. Equation (22) becomes 

S = [@: x )  = 2A2. 
Hence P ( x )  = A2 in (47) and two linearly independent solutions are 

VI = E(t)eA' + F(t)e-AL V, = G(t)e"= + H(t)e-AU. 

By lemma 1 and lemma 2 one gets 
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To determine the t-dependence of @ ( t ,  x) we use (53) and obtain 

@ ( t ,  x )  = A tan A t  = x + 2,9kt 

where A is an arbitrary constant. With this @ ( t ,  x)  one gets 

and 

u(t ,  x) = f&) = h 

where h is an arbitrary constant. 
The functions ul(t,x). u ( t , x )  are well known solutions of the modified Korteweg- 

de Vries equation (60) and the corresponding solutions of the complex modified Korteweg- 
de Vries equation (1) are of the form 

w(f,x) = u,(t,x) + iul(t,x) 

and 

w(t,x) = u ( t , x )  +iu(t,x). (67) 
The functions f3(t) ,  f&) in (65) and (66) are solutions of the similarity reduction in (61). 

B. Solutions for S = -4/.x2. The function S = -4/x2 is also a solution of the Korteweg- 
de Vries equation in (46). 

With S = -4/x2 equation (47) becomes 
4 s = (& x ]  = -- 

X 2  ‘ 
(68) 

Hence P ( z )  = - 2 / x 2  in (47) and two linearly independent solutions are l/x and xz, 
Therefore by lemma 1 and lemma 2 one obtains 

To determine the t-dependence of @ ( t ,  x) let us recall from (43) that 

This leads to a system of nonlinear ordinary differential equations. 

E F’ - E’ F = 0 

E H’-E’ H +  F G ’ - F ’  G = O  (71) 
-12p(E H - F G) = F H ‘ -  F‘ H. 

(72) 

I 
A particular solution of (71) can be found by inspection. Let E and G be constants; then 
one has 

F(1) = l2EP f t M H ( t )  = 12Gp f + N 
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where M and N are arbitrary constants. Hence one obtains 
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3cA x2 
(x3 + 128 t + E)2 

U&, x )  = - (73) 

2x3 - 12g r - E 
K l ( t , X ) = E  

( x 3  + 128 t + B)x 
where A and B are arbitrary constants. 

The functions u l ( t . x ) ,  u ( t . x )  are well known solutions of the modified Korteweg- 
de Vries equation (60) and the corresponding solutions of the complex modified Korteweg- 
de Vries equation (1) is obtained by using (73) in (18) 

w ( ~ , x )  = u ( t , ~ ) + i u ( t , x )  (74) 
with 

where K is an arbilmry constant. 
For K = 0, the function f5(f) in (75) is a solution of another similarity reduction 

of the MKdV equation (60) which is the similarity reduction (9) with f is real and 
D = ( - 2 1 3 ) G .  

Case 2. S,, = 0 
In this case 

S(2,x) = A(t )x  + E(?)  
However, equations (34) and (35) imply that A ( t )  = 0, and hence by the compatibility 
condition (Z), S = 12h2 is a real constant. By (36) D = -U’ and by (32) C = 
g(&2h2 - 3oz) are ah0 red constants. 

Following the same path of calculation as the one in the previous case one can find the 
travelling wave solutions of the complex modified Korteweg-de Vries equation. 

For S = 2h2 one obtains 
@(e)  = a + b tan he 
K O ( $ )  = m bhcoswf sec’y 

U&) = bh sin 05 sec2 he (77) 
u j ( . $ ) = w ( w s i n w f - h t a n @  cosio{) 
u l ( $ )  = - ~ ( o c o s ~ ~ + h t a n h f s i n ~ $ )  

e = x - C t  

and hence 

give the travelling wave solutions of the system in (3). The corresponding solutions of the 
complex modified Korteweg-de Vries equation (1) are of the form 

(79) W X )  = fdt) = UIE) + i u i ( f )  
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and 

w(t ,  x )  = A ( 0  = 4 6 )  + iu(P). (80) 

Because of the dependence on the characteristic coordinate f ,  the f&) and f7(.$) in the 
above are also solutions of the similarity reduction (IO) of the complex modified Korteweg- 
de Vries equation. 

Similarly for S = -2A2 one obtains 
@(.$)=a+btanhA.$ . $ = x - C r  

U&) = m blcoso: sech2Ac 
U&) =e bhsino: sech2A.$ (81)  
U I ( ~ )  = J - - z g i ( ( ~ s h &  - A tanhh: COS I&) 

v i ( ( )  = - ~ ( w c o s o ~  +Atanhi<  s i n o f )  
and hence (81) again gives another travelling wave solution of the system in (3). These 
produce another class of travelling wave solutions of the the complex modified Korteweg- 
de Vries equation (1) and hence another solution of the similarity reduction in (10). 

6. Discussion 

PainlevC analysis provides a new and powerful tool for constructing explicit solutions for 
non-integrable as well as integrable dynamical systems. But it only gives possible solutions, 
so one must check the results if they are actual solutions of the given nonlinear partial 
differential equation. On the other hand, the necessary calculations are in general too 
tedious to do by hand. In those cases one needs to use some computer algebra systems like 
Reduce or Mathematica. 
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